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Most existing rational function approximations for the time domain representation of unsteady generalized
airloads lead to an ill-conditioned system dynamic matrix in the presence of closely spaced poles. A new class
of multiple order pole pure lag rational function approximations (RFA) is presented in this article to overcome
this problem. The present class of approximations is developed as a consistent generalization of an existing
simple pole pure lag RFA while preserving the resulting state vector dimension. A nonlinear nongradient
optimization technique is used for the computation of the lag poles in the approximation. The structure of the
proposed class of approximations preserves the pure lag form, thus allowing for specific physical interpretations
of the individual terms in the approximation and renders the subsequent optimization problem simpler, in that
fewer constraints need to be imposed during the optimization process. Furthermore, the new class of approx-
imations leads to substantial reduction in computational costs for optimization for a given fit accuracy, in
comparison to existing simple pole approximations. Results are presented for the case of a typical delta wing
fighter aircraft configuration.

Introduction

M ODERN flexible fighter aircraft may often possess one
or more natural frequencies of structural vibration modes

that fall within the control bandwidth of the aircraft control
system. This is especially true of unstable fighter aircraft con-
figurations with stability augmentation systems. As a result,
in order to carry out an aeroservoelastic analysis, it becomes
necessary to model the aircraft as a flexible structure, and
include the effects of unsteady aerodynamics in the flexible
aircraft model. The equations of motion for a flexible aircraft
model can be written as

(1)

where [M], [C], and [K] are the modal generalized mass,
damping, and stiffness matrices, respectively, £ is the vector
of modal generalized coordinates, and [F(t)] is the vector of
modal generalized unsteady airloads consisting of a combi-
nation of external aerodynamic forces such as gust loads and
aerodynamic forces developed due to motion along the gen-
eralized coordinates. This article deals exclusively with forces
of the latter type. Hence, the vector [F(t)] can be expressed
as a function of the generalized coordinates in the form [F(i)]

Computation of the unsteady airloads is typically carried
out using techniques like the doublet lattice method, the Mach
box method, the kernel function method, etc. A major lim-
itation of these techniques is that the unsteady airloads can
be calculated only for the case of harmonic motion, i.e. , along
the imaginary axis of the complex Laplace plane. Further,
computation of these airloads is carried out only in the fre-
quency domain, for discrete values of the reduced frequency.
For this purpose, the unsteady airloads are written in the
frequency domain as [F(ik)] = q(/[Q(ik)]g, where qfl is the
dynamic pressure, k is the reduced frequency, and [()(*£)]
is the (complex valued) matrix of unsteady aerodynamic in-
fluence coefficients, henceforth, termed the unsteady aero-
dynamic matrix. In the absence of a viable technique for the
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direct computation of unsteady airloads in the time domain,
as required for aircraft response calculations, it becomes nec-
essary to convert the unsteady airloads from the frequency
domain to the time domain.

RFAs provide a convenient means of carrying out this con-
version, via an intermediate step wherein the frequency do-
main airloads are converted to the Eaplace domain. The use
of RFAs permits each element of the unsteady aerodynamic
matrix to be written as a rational function, i.e., as a ratio of
polynomials, in the Laplace variable s. The structure of the
RFA then allows for easy conversion from the Laplace domain
to the time domain. The primary advantage of RFAs stems
from the linear time invariant (LTI) form of the resulting
equations of motion, thereby allowing the use of existing and
efficient solution procedures for linear systems. The presence
of the unsteady airloads is reflected in the time domain in
terms of an augmented state vector, which, in addition to the
generalized displacement and velocity, also contains addi-
tional aerodynamic states, termed aerodynamic lag states.

Early studies on the conversion of unsteady aerodynamic
loads from the frequency domain to the time domain were
based on the RFA described by the equation

(2)
+

where Qjk is the approximate value of the aerodynamic influ-
ence coefficient from the yth row and A:th column of the un-
steady aerodynamic matrix, s = sblU^ is the nondimension-
alized Laplace variable, A,Jjk(p = 0, 1, 2, . . . , 2 + NL) are
matrix coefficients in the RFA, and /3, are the lag poles in the
RFA. It can be seen that this RFA uses the same denominator
coefficients, termed lag poles, for all elements of the unsteady
aerodynamic matrix. RFAs of this form will henceforth be
termed as column-independent RFAs in this article. Roger1

and Abel2 were among the first to employ such an RFA for
the conversion of unsteady airloads to the time domain. They
used a least-squares technique for the computation of the
linear parameters A,,.k(p = 0, 1, 2, . . . , 2 + NL) in the
RFA, and this formulation is termed the conventional least-
squares (CLS) RFA. However, the accuracy of the resulting
fit was seen to be dependent on the choice of lag poles, for
which no systematic procedure was outlined.
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A variation of the CLS RFA is the modified matrix Fade
(MMP) RFA,3 which differs from the former in that it uses
the same lag poles for each element in a given column of the
unsteady aerodynamic matrix, corresponding to a given de-
gree of freedom (DOF) for the aircraft model under consid-
eration, but the number of lag poles and their numerical val-
ues are allowed to vary between columns. This type of RFA
will henceforth be termed as the column-dependent RFA.
For the same number of lag poles, the MMP RFA yields a
state vector of the same dimension as the CLS RFA. How-
ever, as in the case of the CLS RFA, there was no systematic
procedure for the numerical computation of the lag poles in
the MMP RFA.

The minimum state (MS) method of Karpel,4 as opposed
to the CLS and MMP RFAs, starts with a state-space rep-
resentation of the aircraft equations of motion, and yields the
minimum number of aerodynamic lag states for a given num-
ber of lag poles, among the above three RFAs. Tiffany and
Adams5 introduced a constrained optimization technique for
the computation of the lag poles in the CLS, MMP, and MS
RFAs, such that the resulting least-squares fit error was min-
imized. The corresponding methods were termed the ex-
tended least-squares (ELS) RFA, the extended modified ma-
trix Pade (EMMP) RFA, and the extended minimum state
(EMS) RFA, respectively.

Hoadley and Karpel6 demonstrated the application of min-
imum state unsteady aerodynamic approximations to an aero-
servoelastic model in order to develop low-order state-space
equations for control system analysis and design. Karpel7 in-
troduced the concept of physical weighting of the unsteady
aerodynamic influence coefficients according to the incre-
mental error of each coefficient on the system aeroelastic
characteristics. This weighting was seen to yield a better fit
of the more important terms at the expense of less important
ones. Nissim8 dealt with the problem of reduction of aero-
dynamic augmented states in active flutter suppression sys-
tems by identifying and separating the vibration modes into
two categories: 1) those that have a significant influence on
the flutter characteristics, and 2) the remaining modes. The
aerodynamic influence coefficients corresponding to the for-
mer set of modes were approximated using the CLS RFA,
while the latter were approximated using the quasisteady ap-
proximation. Karpel9 provides a survey of various size re-
duction techniques for aeroservoelastic models.

In the process of examining an RFA similar to the ELS
RFA, Eversman and Tewari10 encountered the phenomenon
of repeated poles, wherein two or more lag poles for a given
column have values very close to each other, resulting in an
ill-conditioned system dynamic matrix in the state-space form
of the aircraft equations of motion. Consequently, they pro-
posed a multiple order pole RFA, which yields the same order
of fit error for the same state vector dimension as their original
RFA, but results in a well-conditioned system dynamic ma-
trix.

In the above RFAs, no direct physical interpretation can
be attributed, in general, to any of the coefficient matrices
[A(}], [A{], . , . , when the lag terms are included. Suryana-
rayan et al.11 have dealt with a restructured form of the CLS
RFA, termed the pure lag RFA, which allows for the inter-
pretation of [Ai] as the quasisteady approximation to the
aerodynamic damping matrix, and of [A2] as the aerodynamic
inertia matrix. The successive matrices from [A3] onwards can
then be interpreted as those representative purely of the un-
steady aerodynamic effects arising from the shed vortices in
the wake. The aerodynamic lag terms in the restructured form
of the CLS RFA proposed in Ref. 11 are referred to as pure
lag terms. However, Ref. 11 dealt with the selection of the
lag poles in an ad-hoc manner.

The present study examines the implication of using an
optimization technique with the pure lag RFA for the sys-
tematic computation of the pure lag poles. The phenomenon

of repeated poles and consequent ill-conditioning of the sys-
tem dynamic matrix is observed to be manifest in the process
of optimized computation of the pure lag poles. A new class
of multiple order pole pure lag (MPPL) RFAs is then pro-
posed in this article, which overcome these deficiencies, while
retaining the benefits of the pure lag representation as well
as preserving the state vector dimension.

Simple Pole Pure Lag RFA
Formulation

The pure lag RFA was first proposed by Suryanarayan et
al., and as given in Ref. 11, is described by the equation

Qik(s) = A()jk A2.ks2

(3)

This RFA is termed the column-independent simple pole pure
lag (SPPL) RFA hereafter. It may be noted that, in the CLS
RFA, the numerical values of the matrices [A{] and [A2] are
dependent on the number of lag terms and lag coefficients
and their values. In contrast, in the SPPL RFA, which is a
restructured form of the CLS RFA, the matrices [A^ and
[A2] are independent of the number of lag terms and their
values. As a consequence, they can be written in terms of the
exact values of the elements of the unsteady aerodynamic
matrix and their derivatives at s — ik = 0 as

A,,, = lim Re Qlk(ik) (4)

(5)

(6)

The column-dependent form of the SPPL RFA can be de-
scribed by the equation

"/.<*> c-3

A. = l im-^Im Qik(ik)

(7)

In order to place the SPPL RFA on equal footing with the
ELS and EMMP RFA, it becomes necessary to compute the
numerical values of the pure lag coefficients by the minimi-
zation of a suitable error function. For this purpose, it is first
observed that the matrices [Al}], [A{], and [A2] in the SPPL
RFA can be computed by the use of Eqs. (4), (5), and (6).
Thus, these equations render superfluous the need to impose
equality constraints on the approximation at k = 0, as is
done in earlier studies,5 in order to improve the curve fit near
k = 0. This property is characteristic of all pure lag RFA
representations. Furthermore, as explained in Ref. 11, Eq.
(3) is meaningful even in a truncated form, for an appropriate
limited range of reduced frequency. For example, in order to
carry out a fit for the unsteady aerodynamic matrix at low
reduced frequency values, it suffices to retain the first two
terms in the RFA described by Eq. (3), after carrying out the
computations for NL > 1. In addition, the range of reduced
frequency over which the fit has to be carried out can be
progressively increased by the addition of successive terms to
the RFA.

In the absence of an analytical expression for Qjk(ik), it
becomes necessary to evaluate the derivatives of the elements
of the unsteady aerodynamic matrix near k = 0 by some
appropriate numerical technique. This, in turn, requires
knowledge of the values of the elements of the unsteady aero-
dynamic matrix at many points in the vicinity of k = 0 for
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accurate evaluation of the derivatives occurring in Eqs. (5)
and (6).

In this article the computation of the remaining linear pa-
rameters [ A ( p , 2)] and the nonlinear parameters in the RFA
is carried out using an iterative procedure involving a least-
squares solution for the linear parameters in conjunction with
a nonlinear optimization procedure for the nonlinear param-
eters. For this purpose, a quadratic cost function is defined
for each individual element of the unsteady aerodynamic ma-
trix in terms of the error between the exact values of that
element of the aerodynamic matrix and the corresponding
approximate values, at each reduced frequency as

where the aerodynamic lag vector £7 / , / = 1, . . . , NL is
defined in terms of the vector of generalized coordinates as

|G,,(̂ ) -
(8)

with the summation in the above equation being carried out
over all discrete reduced frequency locations in the range of
interest.

The linear parameters are now obtained as the solutions of
the set of linear algebraic equations defined by

- 0, / - 1, . . . , NL( (9)

In the absence of sufficient data near k = 0 for the com-
putation of one or more of the parameters [Al}], [A{], and
f/U], these parameters can also be included as variables to be
determined using the least-squares technique, along with [^4(/+2)]
[ / = ! , . . . , N L ( k ) ] .

In order to compute the nonlinear parameters, an appro-
priate objective function is defined as a weighted sum of the
errors ejk for each element of the unsteady aerodynamic ma-
trix.

Accordingly, in the column-dependent case, the objective
function is defined as

(10)

while, in the column-independent case, the objective function
is defined as

(11)
where A^ is the order of the unsteady aerodynamic matrix,
and Wik is an appropriate weighting factor for each element
of the unsteady aerodynamic matrix, taken as unity in this
study.

Finally, the optimization problem is posed mathematically
in the column-dependent case as

minimize EA(w.r.t. /3A) subject to /3k > 0 (12)

and in the column-independent case as

minimize E(w.r.t. /3) subject to /3 > 0 (13)

Assuming equal number of lag terms NL per column, the
state-space form of the aircraft equations of motion in the
column-dependent case are derived as follows. The state vec-
tor is defined as

the superscript k standing for the /cth component of the vector.
Upon conversion of the above equation to the time domain,

the governing equation for the lag states can be written as

where A = .
The aircraft equations of motion can now be written in the

time domain as

= qd

The state-space form of the aircraft equations of motion
can be written in the form X = [A]X, where the dimension
of the system dynamic matrix [A] is given as (2 + NfJA^. An
explicit expression for the matrix [A] is given in the Appendix.

A similar procedure can also be used to obtain the state-
space form of the aircraft equations of motion for the column-
dependent case having a variable number of lag terms per
column, while the state space equations for the column-in-
dependent case can be obtained by dropping k in Eqs. (15)
and (16).

Results
The modal unsteady airloads considered in this study are

typical of the longitudinal motion of a delta wing fighter air-
craft, over a frequency range that is dictated by the actuator
bandwidth. The aircraft is modeled with 7 DOF, viz., two
rigid modes, q{ and q2 (corresponding to heave and pitch);
four symmetric elastic modes, q$, q4, q5, and q(, (normal modes
corresponding primarily to first and second wing bending,
wing torsion, and fuselage bending); and one symmetric con-
trol surface mode q7. The modal generalized unsteady airloads
were calculated for symmetric level flight at sea level, for a
Mach number of 0.9, at 25 equally spaced reduced frequency
locations in the range k = 0 to k = 0.3. These modal
unsteady airloads were computed by the doublet lattice method,
using the aeroelasticity module of the ELFINP (AMD-BA,
France), general-purpose finite element software package.

The quasisteady aerodynamic stiffness matrix [A()] is com-
puted from Eq. (4), while the quasisteady aerodynamic damp-
ing matrix [A{] is computed from a finite difference version
of Eq. (5), using the values of the unsteady aerodynamic
matrix at k = 0 and k = 0.0005. The matrix of aerodynamic
inertia coefficients [A2] is included as an additional variable
to be computed through the least-squares technique, as op-
posed to its computation through Eq. (6).

It can be seen from Eqs. (3) or (7) that the square of the
pure lag pole in the denominator of each term under the
summation symbol is independent of s, and can be absorbed
into the accompanying matrix coefficient, resulting in a sim-
pler form of the pure lag RFA. For example, in the column-
dependent case, the resulting RFA can be described by the
equation

NL(k)

= A,,

(18)
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Table 1 Pure lag pole values obtained for the SPPL RFA

Pure lag numerical values

Column

1

2

3

4

5

6

7

One lag pole
0.3276

0.1216

0.1602

0.3664

0.5366

0.1678

0.1831

Two

0.5958

0.2529

0.2977

0.1574

0.2412

0.3136

0.4028

lag poles
0.5959

0.2530

0.2978

0.1575

0.2413

0.3137

0.4030

Three
0.2156
0.2174
0.3731
0.3760
0.4930
0.4970
0.2714
0.2735
0.1711
0.1726
0.1890
0.1902
0.7641
0.7740

lag poles
0.2164

0.3751

0.4960

0.2724

0.1717

0.1895

0.7680

Four

0.3351
0.3479
0.2290
0.2359
0.6800
0.7200
0.4039
0.4200
0.2230
0.2330
0.2710
0.2860
2.4591
3.1989

lag poles
0.3409
0.3650
0.2340
0.2510
0.7000
0.7600
0.4110
0.4600
0.2270
0.2450
0.2790
0.2949
2.7791
3.8910

A nonlinear nongradient univariate optimization technique12

was used for the computation of the lag poles. In keeping
with Eqs. (12) and (13), the design variables were constrained
to be positive. It was observed that the use of the RFAs
described by Eqs. (7) and (18) led to the same numerical
values of the resulting lag poles and the least-squared fit error
defined by Eq. (10). A similar observation was also made for
the column-independent case.

Numerical results were generated by varying the number
of terms under the summation symbol in Eq. (18). These
results showed that for a given number of lag terms per col-
umn, the numerical values of the lag poles so obtained were
very close to each other. This is reflected in Table 1, which
shows the numerical values of the lag poles computed for all
columns using the column-dependent formulation, for varying
NL(k). For example, it is seen from Table 1 that the use of
four lag terms for column 1 led to four pure lag poles lying
very close to each other, with numerical values 0.3351, 0.3409,
0.3479, and 0.3650. Similar results were observed for the other
columns as well, with the only exception being column 7, for
the case of four pure lag terms in the approximation. The
column-independent case was also observed to lead to similar
results.

In order to validate the accuracy of the column-dependent
SPPL RFA, the approximate aerodynamic influence coeffi-
cients Qjk(ik) given by Eq. (18) with two lag states per col-
umn, were used in the computation of the open loop fre-
quency response in terms of the normal acceleration nz and
the pitch rate q at the sensor locations. Two different methods
were used for the computation of the nz response from the
approximate aerodynamic influence coefficients. In the first
method the computations were carried out by putting s = ik
and £ = g(}(co)e'Ml in the modal equations [Eq. (17)]. In the
second method, the nz response was obtained from the state-
space representation of the aircraft equations of motion. The
n= response computations carried out using the above two
methods were compared with the exact n, values obtained
directly using the exact aerodynamic influence coefficients
Qjk(ik). Figure 1 shows a comparison of the resulting errors
in the magnitude and phase of the normal acceleration values
with respect to the exact nz values. It is clear from Fig. 1 that
the approximate nz response is accurate only when the fre-
quency response computations are carried out from the modal
equations, and that the use of the system dynamic matrix for
the computation of nz leads to highly inaccurate results. A
similar trend was also observed for the pitch rate response
obtained using the column-dependent SPPL RFA, as well as
for the normal acceleration and pitch rate response obtained
using the column-independent SPPL RFA.

The large error in the normal acceleration and pitch rate
response obtained from the system dynamic matrix can be
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Fig. 1 Errors in normal acceleration response obtained from the
column-dependent SPPL RFA using various techniques.

attributed to the existence of repeated poles as discussed above,
resulting in an ill-conditioned system dynamic matrix. These
inaccurate results are a consequence of the use of such an ill-
conditioned matrix for the computation of nz.

The results emphasize that it may not be sufficient to ex-
amine the errors in the response computed from the modal
equations alone, to establish the suitability of the RFA for
state-space modeling.

Multiple Pole Pure Lag
The existence of lag poles with numerical values very close

to each other in a large number of cases in the SPPL RFA
suggested the possibility of existence of multiple order lag
poles in the RFA representation. Furthermore, in the event
that two or more pure lag poles for the same column of the
unsteady aerodynamic matrix have exactly the same numer-
ical values, the RFA representation as given by Eq. (18) is
no longer amenable to a unique least-squares solution. Hence,
an alternate form of RFA representation, involving multiple
order lag poles is called for, at least for those cases wherein
the phenomena of repeated poles is observed. The objective
of this study was to develop such a multiple order pole for-
mulation, as a generalization of the SPPL RFA, which would
preserve the pure lag form of the representation, and leave
the state vector dimension unchanged. Towards this end, a
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new class of MPPL RFAs is proposed, the column-dependent
form of which can be described by the generic equation

function /?(/, k) being used in the MPPL RFA representation.
Thus

Q,k(s} = A()>k + Aljts

(19)

where /?(/, k) is any integer valued function satisfying the
conditions

0 < /?(/, A:) - /?(/ - ! ,£ )<

= 0 (20)

!, [2 < / < NL(k)] (21)

Equation (20) ensures that the numerator of the term mul-
tiplying the matrix [A3] is s3, thereby retaining the pure lag
form and preserving the state vector dimension up to NL(k)
— 1. Equation (21) ensures that each successive lag state is
related to the previous one in the time domain by an ordinary
differential equation of order of at the most 1, thereby pre-
serving the state vector dimension for arbitrary NL(k) > 1.

The column-independent form of the above class of RFAs
can be described by the generic equation

(22)

where /?(/) satisfies the column-independent versions of Eqs.
(20) and (21), and is independent of k.

It may be noted again that the term /32
k or /3J in the original

form of the pure lag RFA as given by Eqs. (7) or (3), re-
spectively, need not be retained, and has been absorbed into
the coefficient A(l+2)jk in the above MPPL term definitions as
given by Eqs. (22) or (19), respectively.

It can be easily seen that the RFAs described by Eqs. (19)
and (22) are pure lag RFA representations, since they satisfy
Eqs. (4-6). Furthermore, for the case when the summation
in Eq. (19) or (22) extends only over one term, i.e., NL(k)
in Eq. (19) or NL in Eq. (22) is equal to 1, then all the above
MPPL RFA representations are equivalent to the SPPL RFA
with one pure lag pole. This is a consequence of Eq. (20) or
its column-independent version. For a fixed NL(k) or for a
fixed NL, the number of possible MPPL RFA representa-
tions is determined by the number of integer-valued functions
/?(/, k) or/?(/) satisfying Eqs. (20) and (21), or their column-
independent versions, respectively.

The procedure to obtain a state-space representation of the
aircraft equations of motion that is consistent with the above
new class of MPPL RFAs, is illustrated below for the column-
dependent case, assuming equal pure lag pole multiplicity NL
per column. Thus, the state vector is defined as

X = (23)

The first aerodynamic lag vector £LI is defined in terms of
the vector of generalized coordinates in the nondimension-
alized Laplace domain as

(24)

where, as before, the superscript (k) refers to the kth coor-
dinate of the vector. The second and successive aerodynamic
lag states can be defined in the Laplace domain in terms of
their immediate predecessors, and depends on the specific

/(s /, k) - - 1, k) = 0
(25)

where 2 < / < NL.
The time domain equations of motion for the aircraft mod-

eled as a flexible structure are given by Eq. (17), where the
lag states can be defined in the time domain in terms of the
differential equations obtained by inversion of Eqs. (24) and
(25) from the Laplace domain to the time domain. These
definitions are given as

(26)

for the first lag state, and

(27)

for the successive lag states from the second lag state onwards,
where 2 < / < NL.

The state-space form of the equations of motion can now
be written as X = [A]X, where [A] is the system dynamic
matrix, and has dimension (2 + NL)N^ An explicit expression
for the matrix [A] is presented in the Appendix. Both the
column-dependent MPPL RFA with a variable number of lag
terms per column, as well as the column-independent MPPL
RFA, admit similar development for the state-space form of
the aircraft equations of motion.

It is clear from Eq. (19) that, for a fixed NL(k), all the
RFAs given by Eq. (19) are equivalent insofar as they lead
to the same state vector dimension.

It is interesting to note that a specific multiple pole pure
lag RFA representation from the class of MPPL RFAs de-
scribed by Eq. (19) can be obtained from the SPPL RFA, by
considering the case when two pure lag poles have numerical
values very close to each other. The approach used in this
case is, in essence, similar to that used in Ref. 10. Thus, in
the event that two pure lag poles for the same column have
essentially the same numerical values, the corresponding ma-
trix coefficients in the RFA representation have numerical
values that are very large, of opposite sign, and are differing
in magnitude by small amounts. In this case, Eq. (18) takes
the form

Aljks -V'2

(s + fik - e) (s + & + e)
(28)

where |e| is small in comparison to \fik\, and \djk\ is small in
comparison to \A3.k\. Upon rearrangement, the last two terms
on the right side of Eq. (28) can be written as

(29)

Since |e is small in comparison to \f$k , Eq. (29) suggests
a MPPL RFA representation of the form

Qik(s) = A0.t
NL(k)

(30)
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It is easily seen that the RFA representation described by
Eq. (30) is contained in the class of MPPL RFAs described
by Eq. (19), and corresponds to the case when/?(/) = 0, / =
1, - . - , NL(k}.

Results generated for the various column-dependent MPPL
RFAs described by Eq. (19) showed no differences between
the least-squares fit errors as defined by Eq. (10), within the
double precision accuracy of the PC-AT 486 computer used,
when the lag poles were computed to the fourth decimal place
accuracy. Furthermore, the numerical values of the lag poles
so computed for all the MPPL RFAs in Eq. (19) were found
to be the same. As a consequence, it is conjectured that all
the RFAs described by Eq. (19) are equivalent, in that they
result in the same numerical values for the lag poles and the
same fit error, for the same number of terms under the sum-
mation sign. Also, in keeping with the above conjecture, in
the following paragraphs, instead of talking about the results
obtained for a specific RFA representation from the class of
RFAs described by Eqs. (19) or (22), reference is made to
the results of the MPPL RFA.

The multiple order pole RFA as given by Eversman and
Tewari10 is

Aljks A2jks2

(5 +

(31)

It may be noted that Ref. 10 dealt only with the column-
independent formulation. By analogy with the present col-
umn-independent formulation, it follows that the RFA in the
above equation is also only one of an entire class of multiple
pole RFAs, which may be expressed in a generic form as

Qlk(s] = A(}/k

(32)

where /?(/) is defined by the column-independent versions of
Eqs. (20) and (21).

Equation (31) corresponds to that specific case of Eq. (32),
when /?(/) = 0 for all /. For a fixed NL, all the RFAs in Eq.
(32) lead to the same state vector dimension. It is obvious
from Eq. (32) that such a class of multiple pole RFAs is not
of a pure lag form. It may further be noted that even the first
coefficient matrix in this equation, i.e., [A()], loses its con-
notation as the quasisteady approximation to the aerodynamic
stiffness, i.e., the static derivative, in comparison to the CLS
RFA in Eq. (2).

Results and Discussion
Figures 2 and 3 show the results of the least-squares curve

fits obtained using the MPPL RFA, for selected elements
from the columns of the aerodynamic matrix that had the
largest errors for a given multiplicity. Figures 4 and 5 show
the curve fit for the same elements in the column-indepen-
dent case. It can be seen from these figures that the ap-
proximations described by Eqs. (19) and (22) give a fairly
good curve fit over the full range of reduced frequency,
even with the lowest multiplicity of the pure lag pole, viz.,
2. It can also be seen that the accuracy of the fit for a given
element increases with an increase in the multiplicity of the
associated pure lag pole. It is also seen from these figures
that even in the case when no lag poles are used [i.e., only
the first three terms in Eqs. (19) and (22) are considered],
the curve fit is good in the vicinity of k — 0, as is expected
for a pure lag RFA. With four lag states per column, a very
good fit was obtained for all elements of the aerodynamic
matrix.

Figure 6 shows a plot of the least-squares fit error as given
by Eq. (11) with respect to the multiplicity of the pure lag
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Fig. 4 Column-independent MPPL RFA curve fits for aerodynamic
influence coefficient Q22.

pole for the column-independent case, and Fig. 7 shows a
similar plot of the least-squares fit error as given by Eq. (10)
for selected columns in the column-dependent case. In both
of these figures, it can be seen that the least-squares fit error
decreases monotonically with an increase in the multiplicity
of the asssociated pure lag pole. It was also seen that, in
general, the fit error decreased approximately exponentially
with the multiplicity of the pure lag pole.
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As a further validation of the MPPL RFA, the open loop
frequency response in terms of the normal acceleration at the
sensor locations was computed from the approximate aero-
dynamic influence coefficients obtained from the MPPL RFA
with two lag terms per column. As in the case of the SPPL
RFA, the n: response was computed both from the modal
equations and from the state-space equations, and a com-
parison of the resulting nz response with the exact values of
nz was carried out. Figure 8 shows the resulting errors in the
magnitude and phase of the approximate nz response with

respect to the exact nz response. It can be seen that both
methods of computation of nz from the approximate aero-
dynamic influence coefficients lead to exactly the same errors
in the nz response, and that the magnitude of these errors is
relatively small. This clearly indicates the superiority of the
MPPL RFA over the SPPL RFA, at least for those cases
when the optimization results in values of the pure lag poles
very close to each other.

Table 2 shows a comparison between the values of the pure
lag poles and corresponding fit errors obtained using different

Column

1
1
1
5
5
5
7
7
7
7
7

Table 2

Number of
lag poles

4
2
1
4
2
1
4
3
2
2
1

Lag values obtained

Multiplicity of
each lag pole

1,1,1,1
2,2
4
1,1,1,1
3,1
4
1,1,1,1
1,1,2
2,2
1,3
4

using different pure lag RFAs

Numerical lag values I
0.3351 0.3409 0.3479 0.3650 *
0.3390 0.3540 *
0.3469 *
0.2230 0.2270 0.2330 0.2450 1
0.2299 0.2390 1
0.2320 1
2.4591 2.7791 3.19893.8910 1
2.5300 2.8100 3.6000 ]
2.6801 3.4281 1
2.59003.1789 1
3.0290 1
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pure lag column-dependent RFAs. The RFAs compared are
the MPPL RFA; the SPPL RFA, and a hybrid pure lag (HPL)
RFA, which allows for different pure lag poles for a given
element, and different multiplicities for each pure lag pole.
A generic form for the HPL column-dependent RFA is given
as

A2.ks2
r. \ —— /4 -I- /4S) ~ ^H* ^ "%

/- N(k,p) ^3

„ = , / = . '4("I + 2)* (s + j8M)7 (33)

where m = I -
Such a form would provide a generalization in the case when

the SPPL RFA leads to a set of pure lag poles, with a cluster
of poles around each of two or more well-separated values.

A basis for comparison of the three column-dependent RFAs
is that their respective contributions to the state vector di-
mension should be equal. Such a comparison was carried out
for those columns of the unsteady aerodynamic matrix, which
led to the phenomenon of repeated poles with the use of the
SPPL RFA. It was found that for the same contribution to
the state vector dimension, all three RFAs led to effectively
the same numerical values for the pure lag poles and prac-
tically the same fit error values. For example, as shown in
Table 2, in the case of column 5, which corresponds to the
predominantly wing torsional mode, the SPPL RFA with four
simple poles leads to four pure lag values in the range 0.233-
0.245. The HPL RFA with two poles, one of multiplicity 3
and the other of multiplicity 1 is seen to lead to two pure lag
poles with numerical values 0.2299 and 0.2390, respectively,
and the MPPL RFA is seen to lead to a pure lag value of
0.2320 for multiplicity 4. A comparison of the corresponding
fit error values shows that the fit errors are almost the same
in all three cases, with the MPPL RFA giving the lowest error.

Table 2 shows that the use of the MPPL RFA is also ef-
fective in those cases, wherein close values of the pure lag
poles were not encountered in the SPPL RFA. This is evident
from a comparison of the fit errors of the three approxima-
tions for column 7, which corresponds to the control DOF.
The SPPL RFA is seen to lead to four well-separated pure
lag poles, viz., 2.4591, 2.7791, 3.1989, and 3.8910, whereas
the MPPL RFA with multiplicity 4 is seen to lead to a value
of 3.0290 for the pure lag pole. Furthermore, Table 2 shows
lag pole values for column 7 obtained using the HPL RFA,
for varying numbers of lag poles and their multiplicities. These
have been chosen such that the resulting contribution to the

tation leads to additional computational advantages during
the optimization process, in that no additional constraints
need to be imposed in order to ensure the accuracy of the fit
near k = 0. In the column-independent MPPL RFA, only
one design variable is involved in the optimization process for
the complete matrix, irrespective of the number of aerody-
namic lag terms used for the curve fit. The corresponding
SPPL RFA, on the other hand, involves as many design var-
iables in the optimization process as the number of lag terms
used. Thus, the use of the column-independent MPPL RFA
leads to a drastic reduction in computation costs, in compar-
ison to the column-independent SPPL RFA. This has also
been pointed out by Eversman and Tewari,10 with a detailed
analysis of the computational costs involved. The reduction
in computation costs is even more striking in the column-
dependent case, since the optimization process needs to be
carried out separately for each column of the unsteady aero-
dynamic matrix.

Conclusions
The computation of lag poles from an existing SPPL RFA

by the use of an optimization process is seen to lead to the
phenomenon of repeated poles, resulting in an ill-conditioned
system dynamic matrix in the state-space form of the aircraft
equations of motion. This problem can be overcome by the
use of a new class of MPPL RFAs proposed in this article.
The new class of MPPL RFAs constitute a consistent gen-
eralization of the SPPL RFA, and are characterized by the
fact that they preserve both the pure lag form of the approx-
imation, and the state vector dimension for a given value of
fit error. The benefits of the new RFA arise both from the
pure lag and multiple pole features of the approximation. The
pure lag form of the approximation allows for the imposition
of fewer constraints on the optimization procedure, in com-
parison to that adopted in earlier studies, in addition to pro-
viding a specific meaning to each coefficient in the RFA. The
multiple pole form of the approximation results in a substan-
tial reduction in computation costs for optimization, in ad-
dition to giving a well-conditioned system dynamic matrix in
the state-space form of the aircraft equations of motion.

Appendix: System Dynamic Matrices
In the case of the column-dependent SPPL RFA with equal

number of lag terms per column of the unsteady aerodynamic
matrix, the system dynamic matrix [A] can be obtained as [A]
= [E] '[F], where the matrices [E] and [F] are given as

/ 0
0 M - A2^
0 A2/
0 A2/

0 A2/

0

0

0

0
-\B2

0

state vector dimension remains constant and equal to that
obtained using the SPPL RFA with four simple poles. It can
be seen that the numerical values of the pure lag poles ob-
tained using the HPL and MPPL RFAs lie between the ex-
treme values of the lag poles obtained using the SPPL RFA
with four simple poles. A comparison of the fit errors for the
three RFAs shows that the fit error in the case of the MPPL
and HPL RFAs is slightly lower than that for the SPPL RFA.
Thus, the MPPL RFA may be looked upon as a possible
generalization of the SPPL RFA.

The advantages of a pure lag RFA representation over a
conventional RFA representation have already been outlined
earlier. Besides these, the use of a pure lag RFA represen-

[F] =

0 7 0 0
qc/A() - K Xq(lA{ - C O 0

0 0 C, 0
0 0 0 C,

0 0 0 0

0
0
0
0

c..

where / is the identity matrix of order A^ x N%, B/ =
diag(/32

A) and C, = diag(jSi).
In the case of the column-dependent MPPL RFA with equal

number of pure lag terms per column, the system matrix can
be written in the form [A] = [E]~'[F], where the matrices
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[E] and [F] are in this case given as

/
0
0
0

0
~

qA

M -

0
0 ~

0
0

0

0
qd\2A2

A2/
0

0

K qdX/

0

-A/
-A/5(2)

0

/
L , - C
0
0 [1

0

0
A/

where d(l) = p ( l ) - p(l - 1), (2 < / < NJ, and B = diag(&).
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